Matric interface umbenannt

This commit is contained in:
ngb 2022-07-19 09:14:00 +02:00
parent 4c8e5c8939
commit b79f26f51e
8 changed files with 118 additions and 120 deletions

View File

@ -28,7 +28,7 @@ dependencies {
runtimeOnly 'com.googlecode.soundlibs:tritonus-share:0.3.7.4'
runtimeOnly 'com.googlecode.soundlibs:mp3spi:1.9.5.4'
api 'colt:colt:1.2.0'
compileOnlyApi 'colt:colt:1.2.0'
testImplementation 'org.junit.jupiter:junit-jupiter-api:5.8.1'
testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.8.1'

View File

@ -7,7 +7,7 @@ import java.util.function.DoubleUnaryOperator;
// TODO: Move Math into Matrix class
// TODO: Implement support for optional sci libs
public class DoubleMatrix implements Matrix {
public class DoubleMatrix implements MLMatrix {
private int columns, rows;
@ -33,7 +33,7 @@ public class DoubleMatrix implements Matrix {
return rows;
}
public double[][] getCoefficients() {
public double[][] coefficients() {
return coefficients;
}
@ -41,27 +41,27 @@ public class DoubleMatrix implements Matrix {
return coefficients[row][col];
}
public Matrix set( int row, int col, double value ) {
public MLMatrix set( int row, int col, double value ) {
coefficients[row][col] = value;
return this;
}
public Matrix initializeRandom() {
public MLMatrix initializeRandom() {
coefficients = MLMath.matrixApply(coefficients, (d) -> Constants.randomGaussian());
return this;
}
public Matrix initializeRandom( double lower, double upper ) {
public MLMatrix initializeRandom( double lower, double upper ) {
coefficients = MLMath.matrixApply(coefficients, (d) -> ((upper-lower) * (Constants.randomGaussian()+1) * .5) + lower);
return this;
}
public Matrix initializeOne() {
public MLMatrix initializeOne() {
coefficients = MLMath.matrixApply(coefficients, (d) -> 1.0);
return this;
}
public Matrix initializeZero() {
public MLMatrix initializeZero() {
coefficients = MLMath.matrixApply(coefficients, (d) -> 0.0);
return this;
}
@ -83,64 +83,64 @@ public class DoubleMatrix implements Matrix {
}
@Override
public Matrix transpose() {
public MLMatrix transpose() {
coefficients = MLMath.matrixTranspose(coefficients);
return this;
}
@Override
public Matrix multiply( Matrix B ) {
coefficients = MLMath.matrixMultiply(coefficients, B.getCoefficients());
public MLMatrix multiply( MLMatrix B ) {
coefficients = MLMath.matrixMultiply(coefficients, B.coefficients());
return this;
}
@Override
public Matrix multiplyAddBias( Matrix B, Matrix C ) {
double[] biases = Arrays.stream(C.getCoefficients()).mapToDouble((arr) -> arr[0]).toArray();
public MLMatrix multiplyAddBias( MLMatrix B, MLMatrix C ) {
double[] biases = Arrays.stream(C.coefficients()).mapToDouble(( arr) -> arr[0]).toArray();
coefficients = MLMath.biasAdd(
MLMath.matrixMultiply(coefficients, B.getCoefficients()),
MLMath.matrixMultiply(coefficients, B.coefficients()),
biases
);
return this;
}
@Override
public Matrix multiplyLeft( Matrix B ) {
coefficients = MLMath.matrixMultiply(B.getCoefficients(), coefficients);
public MLMatrix multiplyLeft( MLMatrix B ) {
coefficients = MLMath.matrixMultiply(B.coefficients(), coefficients);
return this;
}
@Override
public Matrix add( Matrix B ) {
coefficients = MLMath.matrixAdd(coefficients, B.getCoefficients());
public MLMatrix add( MLMatrix B ) {
coefficients = MLMath.matrixAdd(coefficients, B.coefficients());
return this;
}
@Override
public Matrix sub( Matrix B ) {
coefficients = MLMath.matrixSub(coefficients, B.getCoefficients());
public MLMatrix sub( MLMatrix B ) {
coefficients = MLMath.matrixSub(coefficients, B.coefficients());
return this;
}
@Override
public Matrix scale( double scalar ) {
public MLMatrix scale( double scalar ) {
return this;
}
@Override
public Matrix scale( Matrix S ) {
coefficients = MLMath.matrixScale(coefficients, S.getCoefficients());
public MLMatrix scale( MLMatrix S ) {
coefficients = MLMath.matrixScale(coefficients, S.coefficients());
return this;
}
@Override
public Matrix apply( DoubleUnaryOperator op ) {
public MLMatrix apply( DoubleUnaryOperator op ) {
this.coefficients = MLMath.matrixApply(coefficients, op);
return this;
}
@Override
public Matrix duplicate() {
public MLMatrix duplicate() {
return new DoubleMatrix(MLMath.copyMatrix(coefficients));
}

View File

@ -0,0 +1,52 @@
package schule.ngb.zm.ml;
import java.util.function.DoubleUnaryOperator;
public interface MLMatrix {
int columns();
int rows();
double[][] coefficients();
double get( int row, int col );
MLMatrix set( int row, int col, double value );
MLMatrix initializeRandom();
MLMatrix initializeRandom( double lower, double upper );
MLMatrix initializeOne();
MLMatrix initializeZero();
/**
* Erzeugt die transponierte Matrix zu dieser.
* @return
*/
MLMatrix transpose();
MLMatrix multiply( MLMatrix B );
MLMatrix multiplyAddBias( MLMatrix B, MLMatrix C );
MLMatrix multiplyLeft( MLMatrix B );
MLMatrix add( MLMatrix B );
MLMatrix sub( MLMatrix B );
MLMatrix scale( double scalar );
MLMatrix scale( MLMatrix S );
MLMatrix apply( DoubleUnaryOperator op );
MLMatrix duplicate();
String toString();
}

View File

@ -1,48 +0,0 @@
package schule.ngb.zm.ml;
import java.util.function.DoubleUnaryOperator;
public interface Matrix {
int columns();
int rows();
double[][] getCoefficients();
double get( int row, int col );
Matrix set( int row, int col, double value );
Matrix initializeRandom();
Matrix initializeRandom( double lower, double upper );
Matrix initializeOne();
Matrix initializeZero();
Matrix transpose();
Matrix multiply( Matrix B );
Matrix multiplyAddBias( Matrix B, Matrix C );
Matrix multiplyLeft( Matrix B );
Matrix add( Matrix B );
Matrix sub( Matrix B );
Matrix scale( double scalar );
Matrix scale( Matrix S );
Matrix apply( DoubleUnaryOperator op );
Matrix duplicate();
String toString();
}

View File

@ -5,8 +5,6 @@ import cern.colt.matrix.impl.DenseDoubleMatrix2D;
import schule.ngb.zm.Constants;
import schule.ngb.zm.util.Log;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.util.function.DoubleUnaryOperator;
public class MatrixFactory {
@ -17,7 +15,7 @@ public class MatrixFactory {
);
}
public static final Matrix create( int rows, int cols ) {
public static final MLMatrix create( int rows, int cols ) {
try {
return getMatrixType().getDeclaredConstructor(int.class, int.class).newInstance(rows, cols);
} catch( Exception ex ) {
@ -26,7 +24,7 @@ public class MatrixFactory {
return new DoubleMatrix(rows, cols);
}
public static final Matrix create( double[][] values ) {
public static final MLMatrix create( double[][] values ) {
try {
return getMatrixType().getDeclaredConstructor(double[][].class).newInstance((Object)values);
} catch( Exception ex ) {
@ -35,9 +33,9 @@ public class MatrixFactory {
return new DoubleMatrix(values);
}
private static Class<? extends Matrix> matrixType = null;
private static Class<? extends MLMatrix> matrixType = null;
private static final Class<? extends Matrix> getMatrixType() {
private static final Class<? extends MLMatrix> getMatrixType() {
if( matrixType == null ) {
try {
Class<?> clazz = Class.forName("cern.colt.matrix.impl.DenseDoubleMatrix2D", false, MatrixFactory.class.getClassLoader());
@ -53,7 +51,7 @@ public class MatrixFactory {
private static final Log LOG = Log.getLogger(MatrixFactory.class);
static class ColtMatrix implements Matrix {
static class ColtMatrix implements MLMatrix {
cern.colt.matrix.DoubleMatrix2D matrix;
@ -81,68 +79,68 @@ public class MatrixFactory {
}
@Override
public Matrix set( int row, int col, double value ) {
public MLMatrix set( int row, int col, double value ) {
matrix.set(row, col, value);
return this;
}
@Override
public double[][] getCoefficients() {
public double[][] coefficients() {
return this.matrix.toArray();
}
@Override
public Matrix initializeRandom() {
public MLMatrix initializeRandom() {
matrix.assign((d) -> Constants.randomGaussian());
return this;
}
@Override
public Matrix initializeRandom( double lower, double upper ) {
public MLMatrix initializeRandom( double lower, double upper ) {
matrix.assign((d) -> ((upper-lower) * (Constants.randomGaussian()+1) * .5) + lower);
return this;
}
@Override
public Matrix initializeOne() {
public MLMatrix initializeOne() {
this.matrix.assign(1.0);
return this;
}
@Override
public Matrix initializeZero() {
public MLMatrix initializeZero() {
this.matrix.assign(0.0);
return this;
}
@Override
public Matrix apply( DoubleUnaryOperator op ) {
public MLMatrix apply( DoubleUnaryOperator op ) {
this.matrix.assign((d) -> op.applyAsDouble(d));
return this;
}
@Override
public Matrix transpose() {
public MLMatrix transpose() {
this.matrix = cern.colt.matrix.linalg.Algebra.DEFAULT.transpose(this.matrix);
return this;
}
@Override
public Matrix multiply( Matrix B ) {
public MLMatrix multiply( MLMatrix B ) {
ColtMatrix CB = (ColtMatrix)B;
this.matrix = cern.colt.matrix.linalg.Algebra.DEFAULT.mult(matrix, CB.matrix);
return this;
}
@Override
public Matrix multiplyLeft( Matrix B ) {
public MLMatrix multiplyLeft( MLMatrix B ) {
ColtMatrix CB = (ColtMatrix)B;
this.matrix = cern.colt.matrix.linalg.Algebra.DEFAULT.mult(CB.matrix, matrix);
return this;
}
@Override
public Matrix multiplyAddBias( Matrix B, Matrix C ) {
public MLMatrix multiplyAddBias( MLMatrix B, MLMatrix C ) {
ColtMatrix CB = (ColtMatrix)B;
this.matrix = cern.colt.matrix.linalg.Algebra.DEFAULT.mult(matrix, CB.matrix);
// TODO: add bias
@ -150,33 +148,33 @@ public class MatrixFactory {
}
@Override
public Matrix add( Matrix B ) {
public MLMatrix add( MLMatrix B ) {
ColtMatrix CB = (ColtMatrix)B;
matrix.assign(CB.matrix, (d1,d2) -> d1+d2);
return this;
}
@Override
public Matrix sub( Matrix B ) {
public MLMatrix sub( MLMatrix B ) {
ColtMatrix CB = (ColtMatrix)B;
matrix.assign(CB.matrix, (d1,d2) -> d1-d2);
return this;
}
@Override
public Matrix scale( double scalar ) {
public MLMatrix scale( double scalar ) {
this.matrix.assign((d) -> d*scalar);
return this;
}
@Override
public Matrix scale( Matrix S ) {
public MLMatrix scale( MLMatrix S ) {
this.matrix.forEachNonZero((r, c, d) -> d * S.get(r, c));
return this;
}
@Override
public Matrix duplicate() {
public MLMatrix duplicate() {
ColtMatrix newMatrix = new ColtMatrix(matrix.rows(), matrix.columns());
newMatrix.matrix.assign(this.matrix);
return newMatrix;

View File

@ -107,7 +107,7 @@ public class NeuralNetwork {
private NeuronLayer[] layers;
private Matrix output;
private MLMatrix output;
private double learningRate = 0.1;
@ -162,16 +162,16 @@ public class NeuralNetwork {
this.learningRate = pLearningRate;
}
public Matrix getOutput() {
public MLMatrix getOutput() {
return output;
}
public Matrix predict( double[][] inputs ) {
public MLMatrix predict( double[][] inputs ) {
//this.output = layers[1].apply(layers[0].apply(inputs));
return predict(MatrixFactory.create(inputs));
}
public Matrix predict( Matrix inputs ) {
public MLMatrix predict( MLMatrix inputs ) {
this.output = layers[0].apply(inputs);
return this.output;
}
@ -180,7 +180,7 @@ public class NeuralNetwork {
learn(MatrixFactory.create(expected));
}
public void learn( Matrix expected ) {
public void learn( MLMatrix expected ) {
layers[layers.length - 1].backprop(expected, learningRate);
}

View File

@ -1,10 +1,9 @@
package schule.ngb.zm.ml;
import java.util.Arrays;
import java.util.function.DoubleUnaryOperator;
import java.util.function.Function;
public class NeuronLayer implements Function<Matrix, Matrix> {
public class NeuronLayer implements Function<MLMatrix, MLMatrix> {
/*public static NeuronLayer fromArray( double[][] weights ) {
NeuronLayer layer = new NeuronLayer(weights[0].length, weights.length);
@ -29,15 +28,15 @@ public class NeuronLayer implements Function<Matrix, Matrix> {
return layer;
}*/
Matrix weights;
MLMatrix weights;
Matrix biases;
MLMatrix biases;
NeuronLayer previous, next;
DoubleUnaryOperator activationFunction, activationFunctionDerivative;
Matrix lastOutput, lastInput;
MLMatrix lastOutput, lastInput;
public NeuronLayer( int neurons, int inputs ) {
weights = MatrixFactory
@ -87,11 +86,11 @@ public class NeuronLayer implements Function<Matrix, Matrix> {
}
}
public Matrix getWeights() {
public MLMatrix getWeights() {
return weights;
}
public Matrix getBiases() {
public MLMatrix getBiases() {
return biases;
}
@ -103,15 +102,15 @@ public class NeuronLayer implements Function<Matrix, Matrix> {
return weights.rows();
}
public Matrix getLastOutput() {
public MLMatrix getLastOutput() {
return lastOutput;
}
public void setWeights( Matrix newWeights ) {
public void setWeights( MLMatrix newWeights ) {
weights = newWeights.duplicate();
}
public void adjustWeights( Matrix adjustment ) {
public void adjustWeights( MLMatrix adjustment ) {
weights.add(adjustment);
}
@ -121,7 +120,7 @@ public class NeuronLayer implements Function<Matrix, Matrix> {
}
@Override
public Matrix apply( Matrix inputs ) {
public MLMatrix apply( MLMatrix inputs ) {
lastInput = inputs;
lastOutput = inputs
.multiplyAddBias(weights, biases)
@ -135,17 +134,17 @@ public class NeuronLayer implements Function<Matrix, Matrix> {
}
@Override
public <V> Function<V, Matrix> compose( Function<? super V, ? extends Matrix> before ) {
public <V> Function<V, MLMatrix> compose( Function<? super V, ? extends MLMatrix> before ) {
return ( in ) -> apply(before.apply(in));
}
@Override
public <V> Function<Matrix, V> andThen( Function<? super Matrix, ? extends V> after ) {
public <V> Function<MLMatrix, V> andThen( Function<? super MLMatrix, ? extends V> after ) {
return ( in ) -> after.apply(apply(in));
}
public void backprop( Matrix expected, double learningRate ) {
Matrix error, delta, adjustment;
public void backprop( MLMatrix expected, double learningRate ) {
MLMatrix error, delta, adjustment;
if( next == null ) {
error = expected.duplicate().sub(lastOutput);
} else {

View File

@ -5,13 +5,10 @@ import org.junit.jupiter.api.Test;
import schule.ngb.zm.util.Log;
import schule.ngb.zm.util.Timer;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import static org.junit.jupiter.api.Assertions.*;
class NeuralNetworkTest {
@BeforeAll
@ -79,7 +76,7 @@ class NeuralNetworkTest {
}
// calculate predictions
Matrix predictions = net.predict(inputs);
MLMatrix predictions = net.predict(inputs);
for( int i = 0; i < 4; i++ ) {
int parsed_pred = predictions.get(i, 0) < 0.5 ? 0 : 1;